Heuristic Search for Multi-Objective Probabilistic Planning

نویسندگان

چکیده

Heuristic search is a powerful approach that has successfully been applied to broad class of planning problems, including classical planning, multi-objective and probabilistic modelled as stochastic shortest path (SSP) problem. Here, we extend the reach heuristic more expressive namely paths (MOSSPs), which require computing coverage set non-dominated policies. We design new algorithms MOLAO* MOLRTDP, well-known SSP case. further construct spectrum domain-independent functions differing in their ability take into account features problem guide search. Our experiments demonstrate benefits these relative merits heuristics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Power Distribution Planning Using Multi-Objective Harmony Search Algorithm

In this paper, power distribution planning (PDP) considering distributed generators (DGs) is investigated as a dynamic multi-objective optimization problem. Moreover, Monte Carlo simulation (MCS) is applied to handle the uncertainty in electricity price and load demand. In the proposed model, investment and operation costs, losses and purchased power from the main grid are incorporated in the f...

متن کامل

A random search heuristic for a multi-objective production planning

Real world production planning is involved in optimizing different objectives while considering a spectrum of parameters, decision variables, and constraints of the corresponding cases. This comes from the fact that production managers desire to utilize from an ideal production plan by considering a number of objectives over a set of technological constraints. This paper presents a new multi-ob...

متن کامل

Symbolic Heuristic Search for Probabilistic Planning

We describe a planner that participates in the Probabilistic Planning Track of the 2004 International Planning Competition. Our planner integrates two approaches to solving Markov decision processes with large state spaces. State abstraction is used to avoid evaluating states individually. Forward search from a start state, guided by an admissible heuristic, is used to avoid evaluating all states.

متن کامل

Probabilistic Planning is Multi-objective!

Probabilistic planning is an inherently multi-objective problem where plans must trade-off probability of goal satisfaction with expected plan cost. To date, probabilistic plan synthesis algorithms have focussed on single objective formulations that bound one of the objectives by making some unnatural assumptions. We show that a multi-objective formulation is not only needed, but also enables u...

متن کامل

Meta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain

In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i10.26409